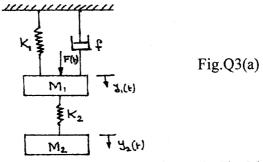


Seventh Semester B.E. Degree Examination, December 2010 Control Engineering

Library, id.

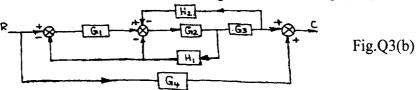
Time: 3 hrs.

Max. Marks:100


Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

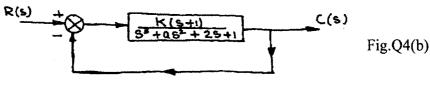
PART - A

- 1 a. Explain the concepts of open loop and closed loop systems, with examples and block diagrams. (08 Marks)
 - b. Derive the transfer function for an armature controlled D.C. motor, which relates output angular displacement (θ) with input voltage (e). (12 Marks)
- 2 a. What is control action?


(02 Marks)

- b. Draw the block diagram with brief explanation of an industrial automatic controller with measuring element. (06 Marks)
- c. Briefly explain proportional and integral control action, with necessary block diagrams and mathematical expressions. (12 Marks)
- a. A dynamic vibration absorber is shown in Fig.Q3(a). Obtain the differential equations describing the behaviour of the system. Draw also the analogous electrical circuit, based on the force-voltage analogy. List all the analogous elements. (10 Marks)

b. Determine the transfer function of the block diagram shown in Fig.Q3(b).


(10 Marks)

- 4 a. Derive expressions for the responses of a first order system, subjected to:
 - i) Step input
- ii) Ramp input

(08 Marks)

b. A system oscillates with a frequency ω , has poles at $S = \pm JW$ and no poles in the right half of S-plane. Determine the values of constants K and a, so that the system shown in Fig.Q4(b) oscillates at a frequency of 2 rad/sec. (12 Marks)

PART - B

- 5 a. Briefly explain the concept of gain margin and phase margin by drawing neat polar plots, for both stable and unstable systems. (06 Marks)
 - b. Sketch the complete Nyquist plot for $G(S)H(S) = \frac{K(4S+1)}{S^2(1+S)(1+2S)}$. Also determine the range values of K for stability, using the Nyquist stability criterion. (14 Marks)
- 6 Draw Bode magnitude and phase angle plots for the transfer function given as:

G(S)H(S) =
$$\frac{4(1+0.5S)}{S^2(1+2S)(1+0.5S+0.125^2S^2)}.$$

Use asymptotic straight line approximation method. Also determine the gain margin and the phase margin from the plot. Hence comment on the system stability. (20 Marks)

7 a. Define root locus.

(03 Marks)

b. The closed loop transfer function of a unity feedback system is given by:

$$\frac{C(S)}{R(S)} = \frac{K(S+4)(S+6)}{S(S+2) + K(S+4)(S+6)} \cdot$$

Sketch the root locus diagram of the system. Show all relevant details on the plot. (17 Marks)

8 a. Explain the need for system compensation.

(06 Marks)

- b. Write a note on:
 - i) Lead compensator
 - ii) Lag compensator.

(14 Marks)

* * * * *